今天看啥
热点:

Hadoop之——MapReduce实战(三),hadoopmapreduce


  转载请注明出处:http://blog.csdn.net/l1028386804/article/details/45998833      

  本文提供一个以Hadoop MapReduce方式统计文本中每个单词的数量的例子,不多说,直接上代码

package com.lyz.hadoop.count;

import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
/**
 * 利用Hadoop MapReduce统计文本中每个单词的数量
 * @author liuyazhuang
 */
public class WordCount {
	//要统计的文件位置
	static final String INPUT_PATH = "hdfs://liuyazhuang:9000/d1/hello";
	//统计结果输出的位置
	static final String OUT_PATH = "hdfs://liuyazhuang:9000/out";
	
	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf);
		final Path outPath = new Path(OUT_PATH);
		//如果已经存在输出文件,则先删除已存在的输出文件
		if(fileSystem.exists(outPath)){
			fileSystem.delete(outPath, true);
		}
		
		final Job job = new Job(conf , WordCount.class.getSimpleName());
		//1.1指定读取的文件位于哪里
		FileInputFormat.setInputPaths(job, INPUT_PATH);
		//指定如何对输入文件进行格式化,把输入文件每一行解析成键值对
		job.setInputFormatClass(TextInputFormat.class);
		
		//1.2 指定自定义的map类
		job.setMapperClass(MyMapper.class);
		//map输出的<k,v>类型。如果<k3,v3>的类型与<k2,v2>类型一致,下面两行代码可以省略
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);
		
		//1.3 分区
		job.setPartitionerClass(HashPartitioner.class);
		//有一个reduce任务运行
		job.setNumReduceTasks(1);
		
		//1.4 TODO 排序、分组
		
		//1.5 TODO 规约
		
		//2.2 指定自定义reduce类
		job.setReducerClass(MyReducer.class);
		//指定reduce的输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);
		
		//2.3 指定写出到哪里
		FileOutputFormat.setOutputPath(job, outPath);
		//指定输出文件的格式化类
		job.setOutputFormatClass(TextOutputFormat.class);
		
		//把job提交给JobTracker运行
		job.waitForCompletion(true);
	}
	
	/**
	 * KEYIN	即k1		表示行的偏移量
	 * VALUEIN	即v1		表示行文本内容
	 * KEYOUT	即k2		表示行中出现的单词
	 * VALUEOUT	即v2		表示行中出现的单词的次数,固定值1
	 */
	static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
		protected void map(LongWritable k1, Text v1, Context context) throws java.io.IOException ,InterruptedException {
			final String[] splited = v1.toString().split("\t");
			for (String word : splited) {
				context.write(new Text(word), new LongWritable(1));
			}
		};
	}
	
	/**
	 * KEYIN	即k2		表示行中出现的单词
	 * VALUEIN	即v2		表示行中出现的单词的次数
	 * KEYOUT	即k3		表示文本中出现的不同单词
	 * VALUEOUT	即v3		表示文本中出现的不同单词的总次数
	 *
	 */
	static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
		protected void reduce(Text k2, java.lang.Iterable<LongWritable> v2s, Context ctx) throws java.io.IOException ,InterruptedException {
			long times = 0L;
			for (LongWritable count : v2s) {
				times += count.get();
			}
			ctx.write(k2, new LongWritable(times));
		};
	}
}
控制台打印信息

运行结果


www.bkjia.comtruehttp://www.bkjia.com/yjs/1005614.htmlTechArticleHadoop之——MapReduce实战(三),hadoopmapreduce 转载请注明出处:http://blog.csdn.net/l1028386804/article/details/45998833 本文提供一个以Hadoop MapReduce方式...

相关文章

帮客评论

视觉看点